


November 1997-05

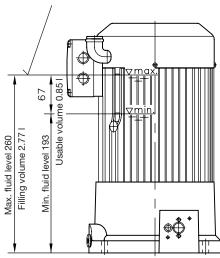


## Table 1b: Pump section

temperature, depending on the time involved.

| н      | Coding for rac | Coding for radial piston pump |                             |                        | Piston diameters (mm)                                             |       |           |            |                      |      |
|--------|----------------|-------------------------------|-----------------------------|------------------------|-------------------------------------------------------------------|-------|-----------|------------|----------------------|------|
|        |                |                               |                             |                        | 4                                                                 | 5     | 6         | 7          | 8                    | 9    |
|        |                | Delivery flow cod             | ding                        |                        | 0,46                                                              | 0,70  | 1,08      | 1,39       | 1,77                 | 2,27 |
| 5-cyi. | l. pump        | Geom. displacer               | nent V <sub>g</sub>         | , (cm <sup>3</sup> /U) | 0.31                                                              | 0.49  | 0.71      | 0.96       | 1.26                 | 1.59 |
| P-     |                | Delivery flow QP              | <sub>u</sub> <sup>2</sup> ) | 50 Hz                  | 0.43                                                              | 0.67  | 0.95      | 1.3        | 1.7                  | 2.16 |
|        | × · ) P        | (Ipm)                         |                             | 60 Hz                  | 0.52                                                              | 0.80  | 1.14      | 1.56       | 2.04                 | 2.59 |
|        | $\times$ $77$  | Permissible                   | p <sub>1</sub>              | (bar)                  | 600                                                               | 400   | 280       | 200        | 150                  | 115  |
| ×      |                | pressure                      |                             |                        |                                                                   | Conti | nuous ope | eration S1 | 3)                   |      |
|        |                |                               | p <sub>max</sub>            | (bar)                  | 700                                                               | 570   | 380       | 290        | 220                  | 170  |
|        |                |                               |                             |                        | No-load/load operation S6-10 min with approx. 30% LD <sup>3</sup> |       |           |            | 0% LD <sup>3</sup> ) |      |

It is not possible to install a float switch (fluid level monitoring) like with bigger versions (type HK(F) 4.. acc. to D 7600-4 and HK 3.. acc. to D 7600-3) due to spatial restrictions.


<sup>2</sup>) Reference value refering to a nominal speed of 1410 rpm with mains frequency 50 Hz or 1750 rpm with mains frequency 60 Hz. Delivery flow reduction due to speed drop of the motor in the range of pmax, see also sect. 5.1. The delivery flow coding can be regarded as a rough reference value for the flow at mains frequency 50 Hz.

<sup>3</sup>) An inertia excess temperature of approx. 50 K can be expect with the max. permissible pressure mentioned in the tables 1b, if p<sub>1</sub> is not exceeded in continuous operation S1 and the indicated load periods are apparent in the load/no-load operation S6-10 min. This temperature usually will be considerably lower in the practical case, see also section 5.4. These temperature figures do apply to usual operation, taking into consideration the unavoidable losses due to back pressure in pipes and valves. Additional losses caused by flow control valves, pressure control valves, orifices etc. may lead to a higher inertia excess

# 3. Further characteristic data

## 3.1 General information

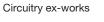
|               | Nomenclature               | Constant delivery pump                                                                                                                                                                                                                                                               |                             |  |  |  |  |
|---------------|----------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|--|--|--|--|
| Design        |                            | Valve controlled radial piston pump, 5 cylinders                                                                                                                                                                                                                                     |                             |  |  |  |  |
|               | Direction of rotation      | Arbitrary for radial piston pumps (version H), delivery flow direction remains the same.                                                                                                                                                                                             |                             |  |  |  |  |
| Mass (weight) |                            | approx. 13 kg                                                                                                                                                                                                                                                                        |                             |  |  |  |  |
|               | Installed position         | Only vertically standing                                                                                                                                                                                                                                                             |                             |  |  |  |  |
|               | Fastening                  | Four bore holes $\varnothing$ 9 on the bottom side, see also section 4                                                                                                                                                                                                               |                             |  |  |  |  |
|               | Pipe connection            | <ul> <li>Depending on the connection block, see section 5.5</li> <li>P Pressurized oil outlet G 1/4 or G 3/8</li> <li>R Reflow port G 1/4 or G 3/8</li> <li>A, B Consumer ports if directional valve banks are mounted, see also mentioned in section 5.5, G 1/4 or G 3/8</li> </ul> | G = (BSPP)<br>the pamphlets |  |  |  |  |
|               | Ambient temperature        | -40 +60°C                                                                                                                                                                                                                                                                            |                             |  |  |  |  |
|               | Filling and usable volumes | Do not exceed the max. fluid level (see marking), because the remaining vo<br>when the fluid temperature rises.                                                                                                                                                                      | lume is required            |  |  |  |  |
|               |                            | ,                                                                                                                                                                                                                                                                                    |                             |  |  |  |  |



The specific usable filling volume is 0.12 I per 10 mm of fluid level drop. The motor outline (winding overhang) is no longer oil immersed if the fluid level drops below the min. marking. Any further drop will result in no considerable volume gain as the bottom interior is occupied by functional parts.

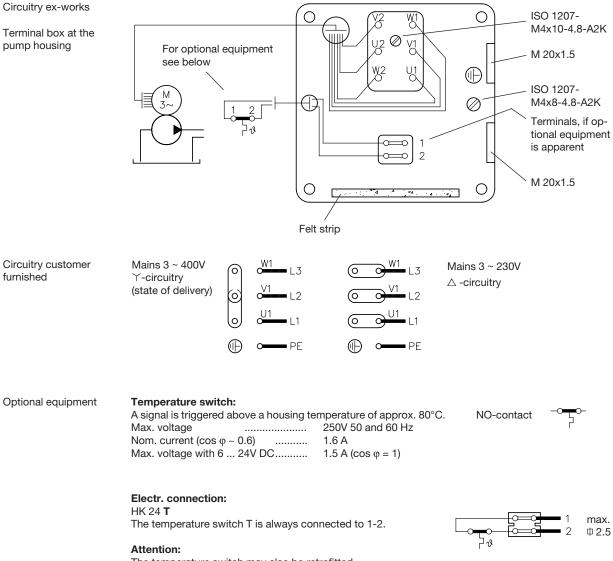
| 3.2 | Hydraulic data |                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|-----|----------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|     | Pressure range | Delivery side (outlet ports P) depending on pump design and delivery flow, see sect. 2, table 1b.                                                                                                                                                                                                                                                                                                                                                                      |
|     | Pressure fluid | Hydraulic oil conforming DIN 51514 part 1 to 3: ISO VG 10 to 68 conform. DIN 51519.<br>Viscosity range: Viscosity during start min. approx. 4; max. approx. 1500 mm <sup>2</sup> /s opt. service:<br>approx. 10 500 mm <sup>2</sup> /s<br>Also suitable are biologically degradable pressure fluids type HEES (Synth. Ester) at service<br>temperatures up to approx. +70°C.<br>Electrically hazardous: Any fluid types containing water must not be used (short-cut). |
|     | Temperature    | Ambient: approx40 +60°C<br>Fluid: -25 +80°C, Note the viscosity range !<br>Permissible temperature during start: -40°C (observe start-viscosity!), as long as the service<br>temperature is at least 20K higher for the following operation.<br>Biologically degradable pressure fluids: Observe manufacturer's specifications.<br>By consideration of the compatibility with seal material not over +70°C.                                                            |

#### 3.3 **Electric data**


| Motor                     |                      | For 3-phase mains, 4-poles, stator shrunk into the pump housing |             |  |  |  |
|---------------------------|----------------------|-----------------------------------------------------------------|-------------|--|--|--|
| Nom. voltage              | (V)                  | 400/230 丫 △                                                     | 460/265 丫 △ |  |  |  |
| Mains frequency           | (Hz)                 | 50                                                              | 60          |  |  |  |
| Rev. rating               | (min <sup>-1</sup> ) | 1390                                                            | 1670        |  |  |  |
| Output                    | (kW)                 | 0.55                                                            | 0.66        |  |  |  |
| Current                   | (A)                  | 1.6 / 2.8                                                       | 1.5 / 2.5   |  |  |  |
| Start current ratio       | $(I_A/I_N)$          | 4.4                                                             | 5.0         |  |  |  |
| Power factor              | (cos φ)              | 0.75                                                            | 0.8         |  |  |  |
| Protection classification |                      | IP54                                                            | IP54        |  |  |  |

Permissible voltage ranges

Mains: 50 Hz  $\pm 10\%~U_{N}$  (like IEC 38) Mains: 60 Hz  $\pm 5\% U_N$ 


Reduced voltage will cause a performance drop ( $\triangle$  reduced  $p_{max}$ ).

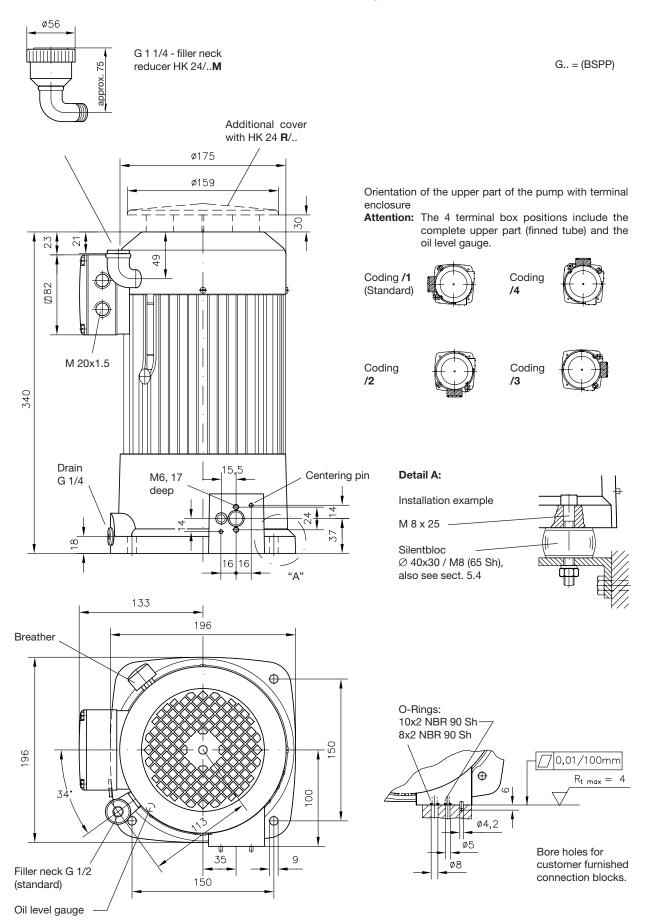
Reference value:  $p_{oper} \approx 0.85 p_{max} \frac{U_{actual.}}{U_N}$ U<sub>actual.</sub> = 400V 60Hz Example: U<sub>N</sub> = 460V 60Hz 400V  $p_{oper max} = 0.85 p_{max} \cdot \frac{400 v}{460 V}$  $\approx 0.7 \text{ p}_{\text{max}}$ 



Terminal box at the pump housing

furnished




The temperature switch may also be retrofitted.

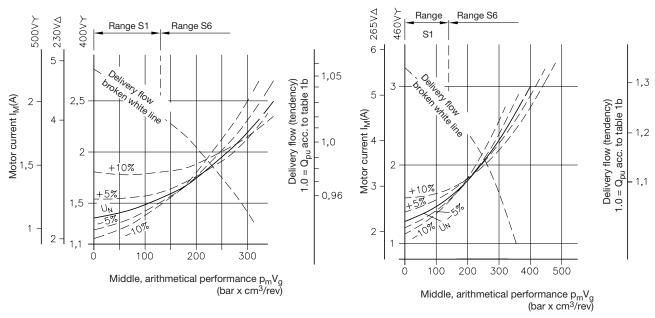
## 4. Unit dimensions

All dimensions are in mm and are subject to change without notice!

## **Basic unit:**

For the dimensions of the different connection blocks, see the corresponding pamphlets listed in sect. 5.5




# 5. Appendix

## 5.1 $I_M - p_B - Q_{Pu}$ - characteristics

The current consumption of the motor depends strongly on its load. The nominal figures of sect. 3.3 apply strictly to one operating point only. The pumps may be operated continuously up to the max. pressure p1 stated in table 1b. Up to 1.8s of the nominal power of the motor can be exploited during load / no load operation. The increased heat built-up under these conditions gets intensively radiated during the idle periods (also see sect. 5.4).

Operating voltage 400/230/500V 50 Hz Y△

Operating voltage 460/265V 60 Hz Y△



The product of  $pV_g$  (bar  $\cdot$  cm<sup>3</sup>/rev) is laid off as abscissa in these curves. This makes a rough consideration possible for the current and the delivery flow to be expected, which is sufficient under most conditions.

## 5.2 Motor protection circuitries and EMC

## 5.2.1 Protective motor switches

S1-operation: The bimetallic switch should be set for the corresponding current, required to achieve the adjusted pressure of (for pressure limiting valve (see  $I_{M}$ -(pV)<sub>calc</sub>- curve sect. 5.1), however not higher than the nom. current IN. This motor protection covers only a possible mechanical blockade of the motor. The pressure limiting valve responses at pressure overload, without a rise beyond the corresponding motor current  $I_{M}$ . The pump would run on and on, resulting in an overheat after a certain time like any other hydraulic power pack of classic construction would do. Such a pressure overload can occur either due to overload of a consumer or start against a stop. This can be immediately identified as the consumer movement stops and also the idle signal would be missing (idle circulation valve doesn't open in the idle periods). A permanent pressure switch for self-supervisioning of the idle periods especially for automatic, not permanently manned systems.

S6-operation: In most cases it is sufficient, to set the response current to approx. (0.85...0.9) of  $I_N$ . This makes sure that on one hand (for pressure  $\leq p_{max}$ ) the bimetallic switch does not trigger too early during normal operation but on the other hand the oil temperature doesn't rise too high due to a prolonged response time after the pressure limiting valve is in action. Malfunctions during idle circulation mode, like described for S1-operation, are more reliably and immediately detected by idle supervisioning. It has to be taken into account that these notes for adjustment only represent very coarse reference values and

perhaps must be corrected a little during a definite test run of the system. This might occur e.g. if the actually required performance of the pump (in S6-operation) is higher than calculated. Too early triggering of the bimetallic switch will be caused as the temperature of the system would be higher after prolonged operation than anticipated thereby reducing the response period of the switch.

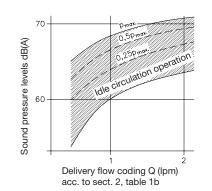
## 5.2.2 Temperature switch (acc. to sect. 3.3)

This is an optional monitoring device, which will cut-off the pump if the fluid temperature rises over 80°C due to any malfunction.

Examples: A pump is running too long against the pressure limiting valve at a unmanned system because the signal for idle circulation was not released. The response period will be too long due to the low current consumption. The ambient temperature is too high, because it was not considered during lay-out of the system or it occurs unintended.

Too much heat is generated in the system because of additional throttle losses caused by flow control valves, pressure reducing valves, orifices etc.

Attention: The temperature switch will trigger only after the oil temperature is risen above approx. 95°C.


## 5.2.3 Notes to ensure EMC (Electromagnetic compatibility)

The compact hydraulic power packs of HAWE are excluded from the EMC-regulation 89/336/EEC as they are no turn-key devices. We recommend to use the interference suppressors type 23140, 3 · 400 VAC 4 kW 50-60 Hz of Murr-Elektronik in D-71570 Oppenweiler, if any interferences should occur.

#### 5.3 **Running noise**

The sound pressure level ranges shall serve to estimate the running noise to be expected. They approximately delimit the spreads recognizable during measuring.

Rigid mounting on a surface capable of resonance (e.g. welded or thin-wall machine stands) may significantly amplify or conduct the operation noise level. We recommend to mount the compact hydraulic power pack via silentblocs e.g. Ø40x30, 65 Shore (see specifications of the measuring conditions).



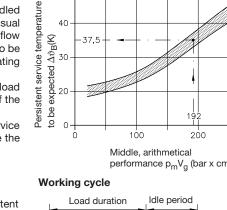
#### 5.4 Heat built-up

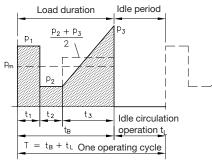
The persistent service temperature is reached after approximately one hour of operating time.

Influence-factors: Pressure distribution during the load duration (middled pressure), share of the idle period, additional throttle losses, exceeding usual figures of back pressure for pipes and valves (pressure reducing valves, flow control valves, throttling valves, or throttles). These influences only have to be taken into account if they are effective for a longer period within the operating cycle (load duration).

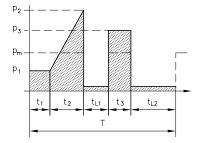
The two most essential parameter, middled performance of the pump and load duration per operating cycle are usually sufficient for a rough re-check of the expected persistent fluid service temperature.

The curves below supply a rough guideline how far the persistent service temperature  $\Delta \vartheta_B$  of the compact hydraulic power packs will settle above the ambient temperature  $\vartheta_{U}$ .


## $\vartheta_{\text{fluid B}} = \Delta \vartheta_{\text{B}} + \vartheta_{\text{U}}$


The  $\Delta \vartheta_B \ \mbox{-} p_m V_g$  -curves below supply a rough guideline how far the persistent service temperature of the compact hydraulic power packs will settle above the ambient temperature, only covering usual figures of back pressure for pipes and valves.

The persistent service temperature will settle higher if additional throttle losses occur caused by e.g. pressure reducing valves, flow control valves, throttling valves, throttles or periodical start against the pressure limiting valve.


θυ

p<sub>m</sub>





## Calculation example:



Given:

Pressure profile simplified down to easy geometric shape with cycle period T laid-off as abscissa

Selected pump HK 24 - H1.39 with geom. displacement V<sub>g</sub> = 0.96 cm<sup>3</sup>/rev

| Pressure                                                                                                                                                             | Time                                                                                                                        |  |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|--|--|
| $\begin{array}{ll} p_1 &= 160 \text{ bar} \\ p_2 &= 320 \text{ bar} \\ p_3 &= 280 \text{ bar} \\ (p_{L1} &= 0 \text{ bar}) \\ (p_{L2} &= 0 \text{ bar}) \end{array}$ | $\begin{array}{rrrr} t_1 &= 25s \\ t_2 &= 5s \\ t_3 &= 10s \\ t_{L1} &= 5s \\ t_{L2} &= 10s \\ \hline T &= 55s \end{array}$ |  |  |

ϑ<sub>fluid B</sub> (°C) = Persistent service temperature of the oil filling  $\Delta \vartheta_{\mathsf{B}}$ 

= Excess temperature after applied load, diagram (K) (°C) Ambient temperature in the installation area of the compact hvdraulic power pack.

(bar) = Calculated, middled pressure per cycle during the load duration  $t_B = t_1 + t_2 + t_3 + \dots$ 

$$p_m$$
 (bar) =  $\frac{1}{t_B} \left( p_1 \cdot t_1 + p_2 \cdot t_2 + \frac{p_2 + p_3}{2} \cdot t_3 \right)$ 

$$p_m V_g$$
 (bar · cm<sup>3</sup>/U) = Middled performance

with  $V_g$  = geometric displacement acc. to the tables in sect. 2 = Relative load duration per operating cycle, %BD (-)

%BD = 
$$\frac{t_B}{t_B + t_L} \cdot 100$$
  
Calculated:

Middled pressure during the load duration  $t_B = t_1 + t_2 + t_3 = 40s$ 

$$p_{m} = \frac{1}{t_{B}} \left( p_{1} \cdot t_{1} + \frac{p_{1} + p_{2}}{2} \cdot t_{2} + p_{3} \cdot t_{3} \right) =$$
$$= \frac{1}{40} \left( 160 \cdot 25 + \frac{160 + 320}{2} \cdot 5 + 280 \cdot 10 \right) = 200 \text{ bar}$$

Middle value for pump performance  $p_mV_g = 200 \cdot 0.96 = 192 \text{ bar} \cdot \text{cm}^3/\text{rev}$ 

Relative load duration 
$$\%BD = \frac{t_B}{T} \cdot 100 = \frac{40}{55} \cdot 100 = 72.72.. \approx 73\%$$

Resulting in  $\Delta \vartheta_B \approx 37$  K from the  $\Delta \vartheta_B - p_m V_g$  - curve

This means, that the persistent service temperature of the compact hydraulic power pack at an ambient temperature  $\vartheta_U = 20^{\circ}$ C will be approx. (37) + 20 = 57°C (under the pre-defined conditions and uninterrupted cycles)

be expected  $\Delta \vartheta_{B}(K)$ 300

Measuring conditions:

Measuring device:

the floor;

50

40

37.5

Work room, interference level approx. 50 dB(A); Measuring point 1m above

1 m object clearance, pump fixed

with 4 silentblocs Ø40x30 65 Shore

Precision sound pressure level measuring instrument DIN IEC 651 KI. I

Viscosity of the oil: Approx. 60 mm<sup>2</sup>/s

(Messrs. silentblocs No. 20291/V).

performance  $p_m V_q$  (bar x cm<sup>3</sup>/rev)

## 5.5 Connection blocks

The compact hydraulic power packs acc. to section 2 only represent the basic versions. They will be ready for operation only after installation of appropriate connection blocks. Table 2a below lists various connection blocks and the corresponding pamphlets which cover more detailed information as well as order examples. The connection blocks acc. to D 6905 A/1 and D 6905 C are used most commonly.

## Table 2a: Connection blocks, overview

 $G_{..} = (BSPP)$ 

| Pamphlet   | Coding                             | Port<br>threads       | Pressure<br>range                      | Flow                            | Integrated functional elements |                                |                  | Brief notes<br>to the                                                         | Suitable di-<br>rectional valve            |  |
|------------|------------------------------------|-----------------------|----------------------------------------|---------------------------------|--------------------------------|--------------------------------|------------------|-------------------------------------------------------------------------------|--------------------------------------------|--|
|            |                                    | ISO 228/1<br>(BSPP)   | from to<br>(bar) <sup>1</sup> )        | (lpm)                           | Pressure<br>limiting<br>valve  | Idle cir-<br>culation<br>valve | Reflow<br>filter | connection block                                                              | banks for direc<br>mounting <sup>1</sup> ) |  |
| D 6905 C   | C5                                 | G 1/4                 | 700                                    | 12                              | no                             | no                             | no               | Simple connection                                                             |                                            |  |
|            | C6                                 | G 3/8                 | 700                                    | 28                              | no                             | no                             | no               | block                                                                         | No possibility                             |  |
| D 6905 B   | B/                                 | G 1/4                 | 450 (700)                              | 8 25                            | jes                            | no                             | no               | For single acting for mounting lifting or clamping devices 1) 2)              |                                            |  |
| D 6905 A/1 | A1/                                |                       | (0) 700                                |                                 |                                |                                |                  | Most frequently used                                                          |                                            |  |
|            | to<br><b>A4/</b>                   | G 1/4                 | in steps                               | 12                              | jes                            | no                             | no               | connection block with<br>pressure limiting valve                              | 1a 1b                                      |  |
|            | AS(V)1/                            |                       | (0) 450                                |                                 |                                |                                |                  | With idle circulation                                                         |                                            |  |
|            | to<br><b>AS(V)4/</b>               | G 1/4                 | in steps                               | 18                              | jes                            | jes                            | no               | valves acc. to D 7490/1                                                       | 1a 1b                                      |  |
|            | AL11(12)                           | G 1/4                 | 51 350<br>in steps                     | 12                              | jes <sup>3</sup> )             | jes <sup>3</sup> )             | no               | Automatic idle circulation<br><sup>4</sup> ) (accumulator charging<br>valve)  | (1a)                                       |  |
|            | AF/<br>ASF/<br>AMF/<br>AKF/        | G 1/4                 | (0) 700<br>in steps<br>dep. on<br>type | 15 33<br>dep. on<br>filter size | jes 4)                         | jes <sup>5</sup> )             | jes              | With reflow filters 12 $\mu$ m nom. 50% / 30 $\mu$ m abs., see <sup>5</sup> ) | 2                                          |  |
|            | <b>AP1</b> and <b>AP3</b>          | G 1/4                 | 5 700                                  | 20                              | jes                            | jes 7)                         | no               | Proportional pressure<br>limiting valve                                       | (1a) (1b)                                  |  |
| D 6905 TÜV | AX14 a.<br>AX3                     | G 1/4                 | 80 450                                 | 6 10                            | jes                            | no                             | no               | Pressure limiting valve with unit approval                                    | $\bigcirc$ $\bigcirc$                      |  |
| D 7230     | <b>SKC11</b><br>to<br><b>SKC14</b> | G 1/4<br>and<br>G 3/8 | 200 400<br><sup>8</sup> )              | 12 20                           | jes                            | jes <sup>9</sup> )             | no               | Integrated directional spool valve                                            | Add-on spool<br>valves acc. to<br>D 7230-1 |  |
| D 7450     | SWC1                               | G 1/4                 | 315                                    | 12                              | jes                            | jes <sup>9</sup> )             | no               | Integrated directional spool valve                                            | Add-on spool<br>valves acc. to<br>D 7450   |  |

Table 2b: Additional intermediate blocks enabling arbitrary activation of a reduced pressure limitation lower than the main pressure

| Pamphlet   | Coding           | Port threads<br>ISO 228/1 Pressure<br>from to<br>(bar) |     | Integrated functional elements <sup>10</sup> )<br>and brief description         | Ongoing pipe<br>connection             |  |
|------------|------------------|--------------------------------------------------------|-----|---------------------------------------------------------------------------------|----------------------------------------|--|
| D 6905 A/1 | V1/              |                                                        | 450 | Pressure limiting valve and 2/2-way                                             | Only via directly moun-                |  |
|            | to<br><b>S4/</b> |                                                        | 450 | directional valve connected in series and acting as a by-pass $P \rightarrow R$ | ted directional valve<br>banks (a) (b) |  |

- 1) It should be kept in mind that the directional valve banks which can be directly mounted may have a max. permissible pressure below 700 bar.
- 2) Pumps type HK should be used for intermittent service only
- 3) Hydraulic cut-off function acts as pressure limitation also. Directional spool valve banks are not ideally suited, because their always apparent leakage would provoke permanent activation.
- <sup>4</sup>) Depending on type also with additional proportional pressure limiting valve
- <sup>5</sup>) Idle circulation valve acc. to D 7490/1 with AS..., acc. to D 7470A/1 with AK... and AM...
- <sup>6</sup>) Directional spool valve banks type SWR...are not ideally suited for mounting onto blocks type AL11(12), because their always apparent leakage would provoke permanent activation. This effect could be minimized by using an accumulator.
- <sup>7</sup>) May be used as idle circulation valve, if the prop. solenoid is deenergized (approx. 5 bar)
- 8) Depending on actuation and flow pattern
- <sup>9</sup>) For directional spool valves with internal connection  $P \rightarrow R$  in idle position
- <sup>10</sup>) Pressure limiting valves acc. to D 7000 E/1, 2/2-way directional valves acc. to D 7490/1, optional with additional check valve acc. to D 7445
- (a) BWN(H) 1F... acc. to D 7470 B/1 BWH 2F... acc. to D 7470 B/1 BVZP 1F... acc. to D 7785 B (1) VB01(11)F... acc. to D 7302 SWR(P) 1F... acc. to D 7450 D 7470 B/1 SWR 2F... acc. to D 7451 2 BWN(H) 1F... acc. to D 7470 B/1 BWH 2F... acc. to D 7470 B/1 BVZP 1F... acc. to D 7785 B VB01(11)F... acc. to D 7302 6) SWR(P) 1F... acc. to D 7450 D 7470 B/1 6) SWR 2F... acc. to D 7451 6)

#### 6. **Additional information**

- Declaration of incorporation according to Machinery Directive 2006/42/EC (see page 10) 6.1
- Declaration of conformity according to Low-Voltage Directive 2006/95/EC (see page 11) 6.2

#### 6.3 **UL-compliant stators**

The following stator types are UL-compliant. UL reference: E 68554 - HK 2.

HAWE Hydraulik SE



HAWE Hydraulik SE Postfach 80 08 04, D-81608 Munich, Germany

Munich, 01/07/2013

## Declaration of Incorporation within the meaning of the Machinery Directive 2006/42/ EC, appendix II, No.1 B

Compact hydraulic power pack type HK(L) and HKF acc. to our pamphlet D 7600-2, D 7600-3 and D 7600-4 (latest release)

is an incomplete machine (acc. to article 2g), which is exclusively intended for installation or assembly of another machinery or equipment.

The specific technical documents, necessary acc. to appendix VII B, were prepared and are transmittedin electronic form to the responsible national authority on request. Risk assessment and analysis are implemented according to appendix I of the Machinery Directive. The dept. MARKETING is authorized to compile the specific technical documents necessary acc. to appendix VII B

HAWE Hydraulik SE Dept. MARKETING Streitfeldstraße 25 D-81673 München

The following basic safety and health protection requests acc. to appendix 1 of below guideline do apply and are complied with:

DIN EN ISO 4413:2010 "Hydraulic fluid power – General rules and safety requirements for systems and their components"

We assume that the delivered equipment is intended for the installation into a machine. Putting in operation is forbidden until it has been verified that the machine, where our products shall be installed, is complying with the Machinery Directive 2006/42/ EC.

This Declaration of Incorporation is void, when our product has been modified without our written approval.

HAWE Hydraulik SE

9998 5909 00

i.A. Dipl.-Ing. A. Nocker (Produktmanagement)

Europäische Aktiengesellschaft (SE) • Sitz der Gesellschaft: München • USt ID Nr: DE180016108 • Registergericht München HRB 174760 Vorstand: Karl Haeusgen, Martin Heusser, Wolfgang Sochor, Markus Unterstein • Vorsitzender des Aufsichtsrats: Joachim Gommlich Hypo-Vereinsbank München, 1780008454 (BLZ 700 202 70), IBAN DE53 7002 0270 1780 0084 54, BIC HYVEDEMMXXX Commerzbank München, 150623700 (BLZ 700 400 41), IBAN DE56 7004 0041 0150 6237 00, BIC COBADEFFXXX Baden-Württembergische Bank, 2368049 (BLZ 600 501 01), IBAN DE96 6005 0101 0002 3680 49, BIC SOLADEST Bayerische Landesbank, 203693428 (BLZ 700 500 00), IBAN DE86 7005 0000 0203 6934 28, BIC BYLADEMMXXX Zertifiziert nach DIN EN ISO 9001 DIN EN ISO 14001

HAWE Hydraulik SE

HAWE Hydraulik SE Postfach 80 08 04, D-81608 Munich, Germany

Munich, 01/07/2013

# Declaration of conformity within the meaning of European Directive 2006/95/EC,

electrical equipment designed for use within certain voltage limits

We, HAWE Hydraulik SE, headquartered at: D-81673 Munich, Streitfeldstraße 25 take sole responsibility for the following declaration that the product

**Compact hydraulic power pack types HK(L) and HKF** according to our publication D 7600-2, D 7600-3 and D 7600-4 (the current issue of each respective publication), to which this declaration refers, complies with the following standards or normative documents:

DIN EN 60 034 (IEC 34 - DIN VDE 0530) DIN VDE 0110

If a change is made to the product that has not been agreed in writing with the manufacturer, this declaration shall become void.

HAWE Hydraulik SE

ladies

9998 5909 00

i.A. Dipl.-Ing. A. Nocker (Produktmanagement)

Zertifiziert nach DIN EN ISO 9001 DIN EN ISO 14001